organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(2,6-Dimethylphenyl)-2-methylacetamide

B. Thimme Gowda,^a* Sabine Foro^b and Hartmut Fuess^b

^aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ^bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany Correspondence e-mail: gowdabt@yahoo.com

Received 19 December 2007; accepted 25 December 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.034; wR factor = 0.080; data-to-parameter ratio = 12.2.

The structure of the title compound (26DMPMA), $C_{11}H_{15}NO$, is closely related to the side-chain unsubstituted N-(2,6dimethylphenyl)acetamide and side-chain substituted N-(2,6dimethylphenyl)-2,2,2-trimethylacetamide and 2-chloro-N-(2,6-dimethylphenyl)acetamide, with slightly different bond parameters. The molecules in 26DMPMA are linked into chains through N−H···O hydrogen bonding.

Related literature

For related literature, see: Gowda et al. (2004, 2008); Gowda, Foro & Fuess (2007); Gowda, Svoboda & Fuess (2007).

Experimental

Crystal data C₁₁H₁₅NO $M_r = 177.24$

Monoclinic, $P2_1/n$ a = 4.7915 (7) Å

o = 11.593 (2) Å	Mo $K\alpha$ radiation
c = 17.966 (3) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 96.11 \ (2)^{\circ}$	T = 100 (2) K
V = 992.3 (3) Å ³	$0.50 \times 0.14 \times 0.08 \text{ mm}$
Z = 4	

Data collection

Oxford Diffraction Xcalibur	Diffraction, 2007)
diffractometer with Sapphire	$T_{\min} = 0.951, \ T_{\max} = 0.989$
CCD detector	7811 measured reflections
Absorption correction: multi-scan	2005 independent reflections
(CrysAlis RED; Oxford	1262 reflections with $I > 2\sigma(I)$
	$R_{\rm int} = 0.036$

Refinement $R[F^2$

$R[F^2 > 2\sigma(F^2)] = 0.033$	164 parameters
$wR(F^2) = 0.080$	Only H-atom coordinates refined
S = 0.95	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
2005 reflections	$\Delta \rho_{\rm min} = -0.16 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1N\cdotsO1^{i}$	0.889 (14)	2.065 (14)	2.9352 (15)	165.9 (12)
Symmetry code: (i) r	-1 v z			

Symmetry code: (i) x - 1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2305).

References

- Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, 03154.
- Gowda, B. T., Foro, S., Svoboda, I., Paulus, H. & Fuess, H. (2008). Acta Cryst. E64, o286.
- Gowda, B. T., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, 03324.
- Gowda, B. T., Usha, K. M. & Jyothi, K. (2004). Z. Naturforsch. Teil A, 59, 69-76.
- Oxford Diffraction (2007). CrvsAlis CCD and CrvsAlis RED. Versions 1.171.32.5. Oxford Diffraction Ltd, Köln, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2008). E64, o380 [doi:10.1107/S1600536807068419]

N-(2,6-Dimethylphenyl)-2-methylacetamide

B. T. Gowda, S. Foro and H. Fuess

Comment

In the present work, the structure of 2-methyl-*N*-(2,6-dimethylphenyl)- acetamide (26DMPMA) (Fig. 1) has been determined as part of a study of the effect of ring and side chain substitutions on the solid state geometry of biologically significant compounds such as acetanilides (Gowda, Foro & Fuess, 2007); Gowda, Svoboda & Fuess, 2007); Gowda *et al.*, 2008). The structure of 26DMPMA is closely related to the side chain unsubstituted *N*-(2,6-dimethylphenyl)-acetamide (26DMPA) (Gowda, Foro & Fuess, 2007) and side chain substituted, 2,2,2-trimethyl-*N*-(2,6-dimethylphenyl)-acetamide (26DMPTMA) (Gowda, Svoboda & Fuess, 2007) and 2-chloro-*N*-(2,6-dimethylphenyl)- cetamide (26DMPCA) (Gowda *et al.*, 2008). The bond parameters in 26DMPMA are similar to those in 26DMPA, 26DMPTMA, 26DMPCA and other acetanilides (Gowda, Foro & Fuess, 2007; Gowda, Svoboda & Fuess, 2007; Gowda *et al.*, 2008). The molecules in 26DMPMA are linked into infinite chains through N—H···O hydrogen bonding (Table 1 and Fig.2).

Experimental

The title compound was prepared according to the literature method (Gowda *et al.*, 2004). The purity of the compound was checked by determining its melting point. The compound was further characterized by recording its infrared and NMR spectra (Gowda *et al.*, 2004). Single crystals of the title compound were obtained from a slow evaporation of an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

The H atoms were located in difference map, and their positional parameters were refined freely with N—H = 0.89 (1) %A and C—H = 0.96 (1)–1.02 (2) Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the U_{eq} of the parent atom).

Figures

Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2. Partial packing view showing the formation of a chain. Hydrogen bonds are represented as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.

N-(2,6-Dimethylphenyl)-2-methylacetamide

Crystal data	
C ₁₁ H ₁₅ NO	$F_{000} = 384$
$M_r = 177.24$	$D_{\rm x} = 1.186 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 1603 reflections
<i>a</i> = 4.7915 (7) Å	$\theta = 2.1 - 24.9^{\circ}$
<i>b</i> = 11.593 (2) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 17.966 (3) Å	T = 100 (2) K
$\beta = 96.11 \ (2)^{\circ}$	Needle, colourless
$V = 992.3 (3) \text{ Å}^3$	$0.50\times0.14\times0.08\ mm$
Z = 4	

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector	2005 independent reflections
Radiation source: fine-focus sealed tube	1262 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.036$
T = 100(2) K	$\theta_{\text{max}} = 26.4^{\circ}$
Rotation method data acquisition using ω and ϕ scans	$\theta_{\min} = 2.9^{\circ}$
Absorption correction: multi-scan [CrysAlis RED (Oxford Diffraction, 2007); empirical (using intensity measurements) absorption correction using spherical harmonics implemented in SCALE3 ABSPACK scaling algorithm]	$h = -5 \rightarrow 5$
$T_{\min} = 0.951, \ T_{\max} = 0.989$	$k = -13 \rightarrow 14$
7811 measured reflections	$l = -22 \rightarrow 21$
Refinement	
Refinement on F^2	Hydrogen site location: difference Fourier map
Least-squares matrix: full	Only H-atom coordinates refined
$R[F^2 > 2\sigma(F^2)] = 0.033$	$w = 1/[\sigma^2(F_o^2) + (0.043P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.080$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 0.95	$\Delta \rho_{max} = 0.17 \text{ e } \text{\AA}^{-3}$

2005 reflections

164 parameters

 $\Delta \rho_{min} = -0.16 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(20)]^{-1/4}

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.016 (2) Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.65780 (18)	0.08126 (8)	0.39277 (5)	0.0262 (3)
N1	0.2247 (2)	0.15987 (9)	0.36988 (6)	0.0189 (3)
H1N	0.044 (3)	0.1485 (11)	0.3751 (7)	0.023*
C1	0.3212 (2)	0.27503 (11)	0.36006 (6)	0.0176 (3)
C2	0.2508 (3)	0.36018 (11)	0.41017 (7)	0.0190 (3)
C3	0.3532 (3)	0.47138 (12)	0.40192 (7)	0.0227 (3)
Н3	0.310 (3)	0.5309 (11)	0.4368 (7)	0.027*
C4	0.5195 (3)	0.49761 (13)	0.34589 (7)	0.0240 (3)
H4	0.592 (3)	0.5742 (12)	0.3436 (7)	0.029*
C5	0.5822 (3)	0.41284 (12)	0.29609 (7)	0.0230 (3)
Н5	0.699 (3)	0.4338 (10)	0.2572 (7)	0.028*
C6	0.4831 (3)	0.30035 (11)	0.30172 (7)	0.0196 (3)
C7	0.4008 (3)	0.07132 (11)	0.38927 (7)	0.0191 (3)
C8	0.2643 (3)	-0.04089 (12)	0.40805 (8)	0.0226 (3)
H8A	0.233 (3)	-0.0348 (11)	0.4619 (8)	0.027*
H8B	0.078 (3)	-0.0457 (11)	0.3814 (7)	0.027*
C9	0.4399 (3)	-0.14537 (14)	0.39496 (10)	0.0340 (4)
H9A	0.633 (4)	-0.1371 (13)	0.4197 (8)	0.051*
H9B	0.362 (3)	-0.2172 (13)	0.4137 (8)	0.051*
H9C	0.457 (3)	-0.1568 (12)	0.3394 (9)	0.051*
C10	0.0701 (3)	0.33281 (14)	0.47103 (8)	0.0247 (4)
H10A	-0.132 (3)	0.3315 (11)	0.4530 (8)	0.037*
H10B	0.109 (3)	0.2566 (14)	0.4935 (7)	0.037*
H10C	0.096 (3)	0.3906 (12)	0.5110 (8)	0.037*
C11	0.5511 (3)	0.21070 (14)	0.24562 (8)	0.0257 (4)
H11A	0.408 (3)	0.1505 (12)	0.2393 (7)	0.039*
H11B	0.586 (3)	0.2484 (12)	0.1971 (8)	0.039*

supplementary materials

H11C	0.726 (3)	0.1670 (11)	0.264	0 (7)	0.039*	
Atomic displace	ement parameter	$rs(\AA^2)$				
	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
01	0.0137 (5)	0.0268 (6)	0.0384 (6)	0.0012 (4)	0.0041 (4)	0.0058 (4)
N1	0.0109 (6)	0.0207 (7)	0.0258 (6)	-0.0004(5)	0.0047 (5)	0.0015 (5)
C1	0.0123 (7)	0.0189 (8)	0.0213 (7)	0.0010 (6)	-0.0006(5)	0.0026 (6)
C2	0.0144 (7)	0.0225 (8)	0.0200 (7)	0.0055 (6)	0.0009 (5)	0.0025 (6)
C3	0.0219 (7)	0.0218 (9)	0.0243 (7)	0.0049 (7)	0.0022 (6)	-0.0031 (6)
C4	0.0232 (8)	0.0203 (8)	0.0285 (8)	-0.0022 (7)	0.0024 (7)	0.0029 (7)
C5	0.0211 (7)	0.0272 (9)	0.0214 (7)	-0.0004 (7)	0.0048 (6)	0.0040 (6)
C6	0.0154 (7)	0.0230 (8)	0.0199 (7)	0.0016 (6)	-0.0001 (6)	0.0006 (6)
C7	0.0163 (7)	0.0220 (8)	0.0193 (7)	0.0017 (6)	0.0030 (5)	-0.0013 (6)
C8	0.0174 (7)	0.0227 (8)	0.0281 (8)	-0.0003 (7)	0.0051 (6)	0.0015 (6)
С9	0.0236 (8)	0.0234 (9)	0.0556 (11)	0.0020 (7)	0.0068 (8)	0.0068 (8)
C10	0.0226 (8)	0.0282 (9)	0.0243 (8)	0.0021 (7)	0.0072 (6)	-0.0002 (6)
C11	0.0270 (8)	0.0284 (9)	0.0224 (7)	-0.0009 (7)	0.0065 (6)	-0.0030 (6)
Geometric para	ameters (Å, °)					
01		1 2317 (15)	С6—	C11	1.5	073 (18)
N1		1.2517 (15)	C7—	C8	1.5	101 (18)
N1—C1		1.5509 (16)	C8—	C9	1.5	08(2)
N1—H1N		0.889(14)	C8-	H8A	0.9	98 (14)
C1-C6		14000(17)	C8	H8B	0.9	68 (13)
C1 - C2		14012(17)	C9	H9A	0.9	88 (16)
$C^2 - C^3$		1 3928 (18)	C9—	H9B	0.9	87 (15)
$C_2 - C_{10}$		1 4994 (19)	C9—	H9C	1.0	20 (17)
C3—C4		1 3828 (18)	C10-	-H10A	0.9	86 (15)
С3—Н3		0.969 (13)	C10-	-H10B	0.9	82 (15)
C4—C5		1.3834 (19)	C10-	-H10C	0.9	81 (14)
C4—H4		0.957 (13)	C11-	-H11A	0.9	78 (15)
C5—C6		1.3952 (18)	C11-	-H11B	1.0	05 (14)
С5—Н5		0.973 (13)	C11–	-H11C	1.0	03 (15)
C7—N1—C1		122.69 (11)	С9—	C8—C7	113	3.27 (12)
C7—N1—H1N		116.6 (8)	С9—	C8—H8A	110).7 (7)
C1—N1—H1N		118.8 (8)	С7—	C8—H8A	105	5.7 (7)
C6—C1—C2		121.59 (12)	С9—	C8—H8B	112	2.1 (8)
C6-C1-N1		120.03 (11)	С7—	C8—H8B	109	9.7 (8)
C2-C1-N1		118.38 (11)	H8A-		104	4.9 (11)
C3—C2—C1		118.17 (12)	C8—	С9—Н9А	111	.4 (9)
C3—C2—C10		120.71 (12)	C8—	С9—Н9В	112	2.7 (9)
C1—C2—C10		121.11 (12)	H9A-	—С9—Н9В	107	7.5 (12)
C4—C3—C2		121.19 (13)	C8—	С9—Н9С	111	.2 (8)
С4—С3—Н3		119.6 (8)	H9A-	—С9—Н9С	106	5.5 (13)
С2—С3—Н3		119.2 (8)	H9B-	—С9—Н9С	107	7.3 (12)
C3—C4—C5		119.76 (13)	C2—	C10—H10A	112	2.7 (8)

supplementary materials

C3—C4—H4	118.4 (8)		C2-C10-H10B		113.0 (8)
С5—С4—Н4	121.8 (8)		H10A-C10-H10B		105.1 (12)
C4—C5—C6	121.20 (13)		C2-C10-H10C		110.5 (8)
С4—С5—Н5	118.0 (7)		H10A-C10-H10C		107.2 (12)
С6—С5—Н5	120.8 (7)		H10B-C10-H10C		108.0 (11)
C5—C6—C1	118.05 (12)		C6—C11—H11A		111.7 (9)
C5—C6—C11	119.78 (12)		C6—C11—H11B		110.3 (8)
C1—C6—C11	122.17 (12)		H11A—C11—H11B		112.9 (11)
O1—C7—N1	122.39 (13)		C6—C11—H11C		111.1 (8)
O1—C7—C8	121.57 (12)		H11A—C11—H11C		103.2 (11)
N1—C7—C8	116.02 (11)		H11B—C11—H11C		107.3 (11)
C7—N1—C1—C6	65.81 (15)		C4—C5—C6—C1		-0.93 (19)
C7—N1—C1—C2	-113.86 (13)	C4—C5—C6—C11		178.87 (12)
C6—C1—C2—C3	-1.77 (18)		C2—C1—C6—C5		2.20 (17)
N1—C1—C2—C3	177.88 (11)		N1-C1-C6-C5		-177.45 (11)
C6—C1—C2—C10	178.15 (12)		C2-C1-C6-C11		-177.59 (12)
N1—C1—C2—C10	-2.20 (17)		N1-C1-C6-C11		2.75 (17)
C1—C2—C3—C4	0.06 (18)		C1—N1—C7—O1		-7.20 (19)
C10-C2-C3-C4	-179.86 (12	.)	C1—N1—C7—C8		171.64 (11)
C2—C3—C4—C5	1.17 (19)		O1—C7—C8—C9		-27.34 (19)
C3—C4—C5—C6	-0.7 (2)		N1—C7—C8—C9		153.81 (13)
Hydrogen-bond geometry (Å, °)					
D—H…A		<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1N···O1 ⁱ		0.889 (14)	2.065 (14)	2.9352 (15)	165.9 (12)

N1— $H1N$ ···O1 ¹
Symmetry codes: (i) $x-1$, y , z .

